Received: April 11, 1983; accepted: April 27, 1983

ACYLATIONS OF PENTAFLUOROSULFANYLAMINE, SF,NH2. PART II. **REACTIONS** OF N-PENTAFLUOROSULFANYLCARBAMYLFLUORIDE, SF_ENHC(0)F, AND N-PENTAFLUORO-**SULFANYLPERFLUOROSUCCINIMIDE, SF,fiC(O)CF,CF,E(O) [I] J**

JOSEPH S. THRASHER*, JON L. HOWELL and ALAN F. CLIFFORD

Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Va. 24061 (U.S.A.)

SUMMARY

The carbamyl fluoride SF_ENHC(O)F reacts with both H₂O and H₂S to give the urea (SF₅NH)₂CO. Evidence supports that this reaction **proceeds through a mechanism involving dehydrofluorination; whereas,** the reagents PhLi and PCl₅ serve only to dehydrofluorinate $SF_RNHC(0)F$. The ring of the cyclic imide $SF_{B}NC(0)CF_{2}CF_{2}C(0)$ can be readily opened by nucleophiles to give products such as SF₅NHC(0)CF₂CF₂C(0)OH, SF₅NHC(0)CF₂CF₂C(0)NH₂, and SF₅NHC(0)CF₂CF₂C(0)0CH₃. Attempts to **prepare analogous six- and seven-membered cyclic imides failed; how**ever, mono- $(SF₅NHC(0)(CF₂)_{3.4}C(0)F)$ and disubstituted products $(SF₅NHC(0)(CF₂)₃$ ₄ C(0)NHSF₅) were formed. The amide-acid fluorides **are easily hydrolyzed by atmospheric moisture to the amide-acids** $SF_{F}NHC(0)(CF_{2})_{3}AC(0)OH$.

INTRODUCTION

We recently reported the synthesis of N-pentafluorosulfanyl amides from the reaction of SF_ENH₂ with acyl halides [1]. Of particular interest was the reaction of SF₅NH₂ with perfluorosuccinyl chloride which led not only to [SF_RNHC(O)CF₂]₂ but also to the cyclic imide SF_ENC(0)CF₂CF₂C(0). We report herein our attempts at preparing the **analogous six- and seven-membered cyclic imides as well as some reaction** chemistry of SF_ENC(0)CF₂CF₂C(0) and SF_ENHC(0)F.

***Current address: Institut fiir Anorganische und Analytische Chemie der Freien Universitat Berlin,1000 Berlin (West) 33.**

0022-1139/84/\$3.00 0 Elsevier Sequoia/Printed in The Netherlands

EXPERIMENTAL

Materials

The compounds SF₅NH₂, SF₅NHC(O)F, and SF₅NC(O)CF₂CF₂C(O) were **synthesized as previously described [I]. Perfluoroglutaryl chloride and perfluoroadipoyl fluoride were obtained from PCR, Inc. and used as recieved. All other reagents were taken from laboratory stock and were suitably purified before use.**

Spectra

Infrared spectra were obtained on a Beckman ZOA-X infrared spectrophotometer, either on gases, pressure l-100 torr, or on mulls in either halocarbon or mineral oil. Mass spectra were obtained on either a Hitachi Perkin-Elmer RMU-7 mass spectrometer, a Finnigan Model 3200 quadrupole mass sepctrometer, or a Varian MAT 112 high-resolution mass spectrometer using either a solid inlet probe or a controlled gas flow inlet. The ¹⁹F and ¹H NMR spectra were taken on either a Varian EM-**390 or a JEOL FX 60Q nuclear magnetic resonance spectrometer using** CC1₃F and $\left(\text{CH}_3\right)_4$ Si, respectively, as internal standards. The ¹³C NMR **spectra were taken on a JEOL FX 60Q nuclear magnetic resonance spec**trometer using Me₂SO-d₆ as an internal standard. Elemental analyses **were obtained from the Chemistry Department's Perkin-Elmer 240 elemental analyzer or from Galbraith Laboratories, Knoxville, TN.**

Reaction of SF_RNHC(0)F with H₂0

In a typical reaction SF_ENHC(0)F (1.86 g; 9.8 mmol) was condensed **at -196'C into a Kel-F reactor containing degassed water (0.5 ml). Approximately** 1 **h after this mixture had been allowed to warm to room** temperature the volatile products, consisting primarily of CO₂, were **removed. The remaining solid residue was then transferred to a Teflon watch glass and allowed to air dry overnight. This material was analyzed by infrared, NMR, and mass spectrometry and found to be the** bis-urea (SF₅NH)₂CO [2].

The hydrolysis reaction was found to be suppressed when SF_ENHC(O)F was reacted with aqueous 50% hydrofluoric acid. This was **concluded from the appearance of appreciable quantities of both** SF₅NCO and CO₂ in the infrared spectrum of the volatile products taken **after 1 h of reaction time.**

432

Reaction of SF_RNHC(0)F with H₂S

The carbamyl fluoride, SF_ENHC(O)F, and H₂S were reacted in a 2:1 **molar ratio under conditions similiar to those used in the preceding reaction. As before, the volatile products were examined after 1 h** of reaction time but were found to consist primarily of SF_ENCO along with a small quantity of COS. Little or no SiF₄ was observed thus **indicating that the carbamyl fluoride had decomposed rapidly to the** isocyanate. For if any SF₅NHC(0)F had remained, SiF₄ would have also **been** present from the attack of HF on the glass vacuum system. After approximately 1 week, (SF₅NH)₂CO was again the product isolated **following reaction workup.**

Reaction of SF_FNHC(0)F with C₆H_FLi

A Kel-F reactor containing SF_SNHC(0)F (1.32 g; 7.0 mmol) was chilled to -196⁰C prior to the addition of C_6H_5L i (4.4 ml of a 1.6 M **solution in ether/benzene). After being degassed, the mixture was placed in a -12O'C slush bath and allowed to warm slowly to room temperature overnight. The volatile products were then removed to the vacuum line where repeated distillations gave approximately 6 mm01 of** SF₅NCO. The gelatinous precipitate remaining in the Kel-F reactor **was thought to be LiF as it would not sublime under vacuum even at elevated temperatures. No evidence was obtained for the desired pro** $duct$ SF₅NHC(0)C₆H₅.

Reaction of SF_FNHC(0)F with PC1_F

In a typical reaction, the carbamyl fluoride was prepared in situ prior to being placed on an excess of PCl₅. In every case the volatile products isolated were SF₅NCO, HCl, COF₂, COClF, and COCl₂. Analysis **of the reaction mixture after heating at 60°C for 3 days gave no** evidence for the imine $SF₅N=CC1₂$.

Preparation of SF₅NHC(0)CF₂CF₂C(0)OH

The hydrolysis of the cyclic imide, SF_ENC(O)CF₂CF₂C(O), to **SF,NHC(O)CF,CF,C(O)OH was** followed **by both NMR and mass spectro**metry. In one experiment, a small aliquot of SF₅NC(0)CF₂CF₂C(0) **which had been opened to the air was examined by both electron impact and chemical ionization mass spectrometry and found to be SF,NHC(O)CF,CF,C(O)OH.** In **a second experiment, an unsealed sample** of SF₅NC(O)CF₂CF₂C(O) in deuterodimethyl sulfoxide was monitored by ¹⁹ MMR spectrometry. Two sets of CF₂ resonances as well as two AB_A splitting patterns were observed in the initial spectrum. With time the outer set of CF₂ resonances and the lower field AB₄ **pattern diminshed in intensity. The final product of the hydrolysis reaction was perfluorosuccinic acid.**

FASF4BNHC(0)CF2CCF2DC(O)OH: (nc) mass spectrum (70 eV) m/e $(\text{rel intensity}): 316 [\text{M+H}]^{+} (0.2), 298 [\text{M-OH}]^{+} (0.4), 296 [\text{M-F}]^{+}$ (0.1) , 295 (0.2) , 270 $[M-COOH]$ ⁺ (0.7) , 170 $[SF_{5}NHC(0)]$ ⁺ (20.6) , 150 **[SF4NCO]+ (lO.O), 146 (35.5), 128 (10.9), 127 (lOO.O), 126 (16.5), 124 (11.6), 117 (4.8), 109 (9.9), 106 (8.3), 105 (4.0), 104 (8.6), 100 (31.0), 97 (8.5), 89 (9.2), 69 (6.3), 51 (7.0), 50 (5.2); chemical ionization mass spectrum (isobutane) m/e (rel intensity): 316 [M+H]+ (lOO.O), 298 (12.9), 296 (2.8), 170 (14.4), 146 (29.6), 128 (9.9), 127 (68.8), 126 (8.6), 124 (23.1), 112 (5.9), 109 (11.5), 107 (8.1), 106 (7.0), 105 (46.1); ¹⁹F NMR (Me₂SO-d₆): S_A 91.1 (m),** $\delta_{\rm B}$ 75.9 (m), $\delta_{\rm C}$ -116.7 (t), $\delta_{\rm D}$ -119.3 (t) $\overline{U_{\rm AB}}$ = 158.3 Hz, $J_{\rm CD}$ = **5.5 Hz (relative areas of A, B, C, and D were 1:4:2:2)1.**

Preparation of SF₅NHC(0)CF₂CF₂C(0)NH₂

Anhydrous ammonia (I mmol) was condensed at -196'C into a 50 ml glass reaction cylinder containing SF₅NC(0)CF₂CF₂C(0) (0.025 g; **0.084 mmol). Upon warming to room temperature, a viscous liquid formed in the reaction vessel. After several hours a white crystalline solid separated from this liquid. Approximately 36 h later the excess ammonia was removed under vacuum and the remaining solid residue was transferred to a vacuum sublimator. Sublimation at 60-70°C gave SF,NHC(O)CF,CF,C(O)NH2 (0.0025 g) in 9.4% yield.**

 $F^{A}SF_{4}^{BMn^CC(0)CF_{2}^{D}CF_{2}^{E}C(0)NH_{2}^{F}$: (nc) IR (mull): 3510 (mb), **3350 (mb): 3210 (mb): 25:O (w), ?737 (ssh), 1715 (s), 1655 (vs), 1470 (mb), 1340 (m), 1250 (w), 1195 (msh), 1175 (s), 1160 (s), 1137 (vs), 1068 (w), 1050 (w), 980 (ms), 887 (s), 850 (vs), 835 (vs), 808 (vs), 723 (m), 643 (m), 605 (m), 570 (m) cm-'; mass spectrum** (70 eV) m/e (rel intensity): 315 $[M+H]^+$ (1.2), 298 $[M-MH_2]^+$ (0.1), 271 (25.7), 251 (1.7), 239 (5.2), 221 (1.0), 209 (2.6), 172 $[M-SF₅]$ ⁺ (29.3) , 170 $[SF_RNHC(0)]^+$ (14.0), 150 $[SF_ANCO]^+$ (10.7), 145 (93.3), **144 (13.3), 128 (27.7), 127 (80.0), 125 (16.7), 109 (20.7), 105 (14.7), 104 (4.9), 100 (40.0), 95 (32.7), 89 (18.0), 72 (30.0), 71 (15.3), 58 (86.7), 44 (100.0); chemical ionization mass spectrum (isobutane) m/e (t-e1 intensity): (13.6), 74 [NHC(O)CF]+ (100.0); 315 [M+H]+ (26.0), 172 [M-SF5]+** 'H and 'F NMR (Me₂SO-d₆; 'F spectrum-Fourier transform consisting of 3000 scans): $\overline{\delta}_A$ 106.0 (m), $\delta_{\rm B}$ 79.8 (m), $\delta_{\rm C}$ unresolved, $\delta_{\rm D}$ -113.8 (bs), $\delta_{\rm F}$ -117.4 (bs), $\delta_{\rm F}$ **7.92 (bs) (JsF_sF = 158.9 Hz). 4**

Attempted Preparation of SF₆NHC(0)CF₂CF₂C(0)OCH₃

Freshly distilled CH30H (0.15 ml; 3.75 mmol) was transferred by 1 **syringe to a glass reaction vessel containing SF kC(0)CF2CF2C(O) 8 (1.07 g; 3.6 mmol) which had been cooled to -196 C. After being degassed, the reaction mixture was allowed to warm slowly to room temperature. Four hours later an infrared spectroscopic examination of the gases over the reaction mixture revealed that unreacted** CH₂OH remained. Therefore, the mixture was heated at 60-70^oC over**night. At this time the volatile products, which consisted primarily** of Sif_A , SO_2F_2 , and $HNS(O)F_2$ were removed under vacuum. The remain**ing less volatile liquid residue was then distilled into a detachable U-trap held at -196'C. The distillate (0.175 g) was analyzed by** IR, **NMR, mass spectrometry, and elemental analysis but could not be identified. Several months later a crystalline solid had separated from the less volatile liquid product. This solid was purified by vacuum sublimation prior to being analyzed by mass spectrometry. An intense fragment (27.5%) at m/e 330 in the chemical ionization mass spectrum gave some evidence for the desired product** SF₅NHC(0)CF₂CF₂C(0)OCH₃, but as shown below the compound was obviously **contaminated with other by-products from the reaction.**

Reaction of SF₅NH₂ with ClC(0)(CF₂)₃C(0)Cl

Gaseous NSF₃ (10.0 mmol) and HF (0.5 ml; 25 mmol) were condensed **at -196'C into a Kel-F reactor and allowed to react overnight at room temperature before refreezing to -196'C and condensing in** $\text{CIC}(0)(\text{CF}_2)$ ₃C(0)C1 (4.0 mmol). The reaction mixture was then allowed **to warm slowly to room temperature. Thirteen days later the volatile products were moved onto a NaF scrubber. The reactor was then taken into an inert atmosphere box where the remaining solid material (1.06 g) was removed to a vacuum sublimator. A small quantity of** material, subsequently identified as SF₅NHC(0)(CF₂)₃C(0)F (0.28 g; **19% yield), was found to sublime off the cold finger of the sublimator into the vacuum line. Further sublimation of the remaining product mixture gave SF5NHC(0)(CF2),C(O)OH (0.01 g) at 60-70°C and SF5NHC(0)(CF2)3C(O)NHSF5 (0.44 g, 22% yield) at 90-'OO'C. Examination of the volatile products removed from the NaF scrubber gave no evidence for a cyclic imide product analogous to the one formed in the reaction of SF5NH2 with C1C(0)CF2CF2C(O)C1 [l].**

F'SF'_ANH°C(O)CF₂°CF₂°CF₂°C(O)NH°SF_A°F': (nc) mp 173-175°C; IR **(mull): 3235 (s), 2998 (m), 1738 (s), 1499 (s), 1255 (m), 1200 (s), 1170 (s), 1135 (s), 1072 (m), 950-852 (vs), 825 (s), 763 (m), 690 (w), 655 (w), 600 (s) cm-'; mass spectrum (70 eV) m/e (rel** $intensity):$ 491 $[M+H]$ ⁺ (0.06), 451 (0.07), 348 $[M-NHSF_{E}]$ ⁺ (5.5), **320 [M-C(0)NHSF5]+ (5.1), 301 (6.8), 221 (3.3), 201 (2.0), 170** [SF₅NHCO]⁺ (32.3), 150 [SF₄NCO]⁺ (14.7), 128 (14.0), 127 (100.0), 124 **(3.0), 112 (3.0), 100 (8.7), 94 (2.4), 89 (7.3), 70 (l.O), 69 (2.5);** chemical ionization mass spectrum (isobutane) m/e (rel intensity): **491 [M+H]+ (61.9), 348 (35.0), 222 (12.0), 221 (Il.'), 170 (40.8),**

150 (33.1), 128 (15.3), 127 (lOO.O), 124 (18.8), 105 (26.3); 'H and ¹⁹F NMR (Me₂SO-d₆): 6_A 93.1 (m), 6_B 76.6 (m), 6_C 8.91 (bs), 6_D -114.6 **(t), SE -112.7 (qu) [JAB = 158.6 HZ, JDE = 2.6 Hz (relative areas of A, B, D, and E were 1:4:2:1)]. ''C NMR (Me₂SO-d_c): SC=0 156.2** (bm) , $6CF_2$ 111.3 (t of m) and 110.0 (t of m)($\frac{1}{2}C_F = -268$ Hz).

Anal: Calcd. for C₅H₂N₂S₂O₂F₁₆: C, 12.24; H, 0.41; N, 5.71; **S, 13.06. Found: C, 12.50; H, 0.34; N, 6.03; S, 12.64.**

FASF4BNHCC(0)CF2DCF2ECF2FC(O)FG: (nc) IR **(neat): 3270 (w), 1875 (m), 1778 (vs), 1748 (vs), 1490 (w), 1355 (msh), 1330 (m), 1250 (sb), 1165 (vs), 1115 (vs), 1040 (vs), 955 (ms), 910 (m), 890 (m), 860 (m), 760 (w), 730 (w), 600 (m) cm-'; mass spectrum (70 eV) m/e (rel intensity): 368 tM+Hl+ (CO.,); 348 [M-F]+ (<O.l), 347 (<O.l), 328 (<O.l), 320** $[M-C(0)F]^{+}$ (<0.1), 221 (3.8), 201 (2.8), 197 $[M-C(0)NHSF_{c}]^{+}$ (1.1), **193 (l.O), 178 (3.1), 173 (6.0), 170 (6.2), 169 (5.6), 150 (26.4), 131 (26.4), 127 (27.0), 109 (3.9), 100 (lOO.O), 93 (4.3), 89 (6.0), 81 (5.6), 70 (16.0), 69 (26.8), 64 (11.2), 50 (9.6), 48 (6.2), 47** (5.6) , 43 (6.8) , 31 (22.0) ; ¹H and ¹⁹F NMR $(CDC1₃)$: δ_{Λ} 67.8 (m), $\delta_{\rm g}$ 72.5 (m), $\delta_{\rm c}$ 8.68 (bs), $\delta_{\rm p}$ -118.5 (t), $\delta_{\rm g}$ -123.7 (d), $\delta_{\rm f}$ -117.8 \overline{q}), \overline{s}_G 24.6 (m) I_{AB} = 158.2 Hz, J_{DF} = 9.2 Hz, J_{DG} = 9.2 Hz, J_{EG} = **7.3 Hz (relative areas of A, B, D, E, F, and G were 1:4:2:2:2:1)].**

 $F^{A}SF_{4}^{B}NH^{C}C(0)CF_{2}^{D}CF_{2}^{E}CF_{2}^{F}C(0)OH^{G}$: (nc) IR (mull): 3495 (w), **3275 (vsb), 3155 (mb), 1878 (w), 1744 (vsb), 1494 (s), 1442 (w), 1430 (w), 1375 (w), 1305 (w), 1247 (m), 1198 (vs), 1169 (vs), 1153 (s), 1140 (s), 1077 (ss), 933 (s), 878 (vs), 838 (s), 786 (w), 764 (w), 730 (w), 674 (w), 633 (msh), 598 (s) cm-'; mass spectrum (70 eV) m/e (t-e1 intensity): 366 [M+Hl+ (O.l), 348 [M-OH]+ (0.2), 320 [M-COOHl+** $(1.0), 301 (0.3), 221 (2.1), 201 (2.3), 176 [CFCF₂CF₂COOH]⁺ (23.3),$ 170 [SF₅NHCO]⁺ (18.9), 150 [SF₄NCO]⁺ (42.8), 131 (19.2), 127 [SF₅]⁺ **(lOO.O), 124 (7.9), 119 (22.1), 112 (9.8), 105 (6.9), 104 (8.7), 100 (43.5), 89 (9.1), 85 (6.5), 70 (3.2), 69 (6.6); chemical ionization** $(isobutane)$ m/e (rel intensity): 366 $[M+H]$ ⁺ (100.0), 348 $[M-OH]$ ⁺ **(1.8), 346 [M-F]+ (4.5), 222 (4.7), 221 (1.9), 124 (3.9), 105 (7.5),** 104 (13.1), 100 (1.2), 89 (3.4), 85 (1.1), 70 (1.2), 69 (2.0); ¹H and ¹⁹F NMR (Me₂SO-d₆): $\delta_{\rm A}$ 103.4 (m), $\delta_{\rm B}$ 79.2 (m), $\delta_{\rm C}$ 8.91 (bs), $\delta_{\sf n}$ -114.0 (bt), $\delta_{\sf F}$ -122.5 (bs), $\delta_{\sf F}$ -117.7 (bt), $\delta_{\sf n}$ unresolved \rm{Id}_{AB} = 158.7 Hz, J_{nF} = 10.0 Hz (relative areas of A, B, D, E, and F were $1:4:2:2:2)$].

Reaction of SF₅NH₂ with FC(O)(CF₂)_AC(O)F

Reaction conditions were identical to those in the last experiment with the exception that a reaction time of one month was used. Fractional sublimation gave the following products: $SF_{5}NHC(0)(CF_{2})_{4}C(0)F$ (0.167 g; 10.1% yield), SF₅NHC(0)(CF₂)₄C(0)OH (0.07 g), SF₅NHC(O)(CF₂)_AC(O)NHSF₅ (0.36 g; 16.7% yield). Again examination **of the volatile products from the NaF scrubber gave no evidence for a cyclic imide product.**

FASF4BNHCC(0)CF2DCF2ECF2ECF2DC(O)NHCSF4BFA: (nc) mp 168-17l'C; IR **(mull): 3275 (s), 2985 (m), 1740 (s), 1488 (s), 1260 (w), 1215 (w), 1193 (s), 1167 (m), 1150 (m), 1120 (m), 925 (s), 868 (s), 800 (w), 760 (w), 600 (s) cm-'; mass spectrum (70 eV) m/e (rel intensity).** 541 $[M+H]$ ⁺ (0.1), 502 (0.1), 501 (0.1), 398 $[M-NHSF_{E}]$ ⁺ (3.5), 370 $[M-C(0)NHSF_{5}]^{+}$ (5.5), 351 (10.4), 170 $[SF_{5}NHCO]^{+}$ (32.9), 150 (7.6), **131 (8.5), 128 (2l.a), 127 [SF~I+ (ioo.o), 104 (2.8), loo (8.3), 89 (6.2), 85 (2.7), 69 (6.7); chemical ionization mass spectrum (isobutane) m/e (rel intensity): 541 [M+H]+ (7.2), 398 (7.6), 378 (2.0), 371 (l.l), 370 (1.6), 351 (3.1), 170 (11.4), 150 (19.5), 131 (12.9), 128 (16.7), 127 (54.5), 105 (18.2), 104 (4.9), 100 (19.2), 89 (lOO.O),** 70 (11.4), 69 (11.4); 'H and ''F NMR (Me₂SO-d_c): b, 103.0 (m), b_p 79.0 (m), δ_c 7.13 (bs), δ_p -114.5 (bt), δ_E -120.7 (bt) [J_{AB} = 160 Hz, J_{DE} = 12.5 Hz (relative areas of A, B, D, and E were 1:4:2:2)]; ¹³C **NMR (Me₂SO-d_c):** ∞ **C=O 153.7 (bm),** ∞ **CF₂ 111.6 (t of m) and 109.6 (t of m)** ('J **C-F = -267 Hz).**

Anal: Calcd. for C₆H₂N₂S₂O₂F₁₈: C, 13.33; H, 0.37; N, 5.19; **S, 11.85. Found: C, 13.48; H, 0.42; N, 5.33; S, 11.30.**

 $F^{A}SF_{a}^{B}NH^{C}C(0)CF_{2}^{D}CF_{2}^{E}CF_{2}^{F}CF_{2}^{G}C(0)F^{H}$: (nc) IR (mull): 3280 (s), 1, **(vs), 1165 (vs), 1135 (vs), 1120 (vs), 1095 (s), 993 (m), 930 (vs 1860 (s), 1740 (vs), 1487 (s), 1367 (m), 1332 (m), 1260 (s), 1190 905 (vsji 865 (vsb), 802 (ms), 758 (ss), 715 (ms), 635 (ssh), 590** (sb) cm^{-1} ; mass spectrum (70 eV) m/e (rel intensity): 418 $[M+H]$ ⁺ (0.1) , 398 $[M-F]$ ⁺ (0.1) , 370 $[M-C(0)F]$ ⁺ (0.1) , 350 (0.1) , 320 (0.1) , 247 [M-C(0)NHSF₅]⁺ (1.7), 219 (4.0), 197 (2.3), 170 (34.6), 169 (17.1), **150 (9.2), 131 (25.0), 128 (21.3), 127 (lOO.O), 119 (20.0), 104 (6.3),**

100 (29.2), 89 (8.8), 85 (**2.9), 70 (4.2), 69 (83.3), 47 (20.0), 43 (25.0), 31 (10.4). 'H and "F NMR (CDC13): GA 68.1 (m), 5B 72.4** (m), ⁶e 8.55 (bs), ⁶e -119.1 (bt), ⁶e -112.5 (m), ⁶e -112.5 (m), م -118.6 (bq), م_H 25.2 (m) [J_{AR} = 157.5 Hz, J_{DF} = 9-10 Hz, J_{FG} = 9-10 Hz, J_{CH} = 9-10 Hz (relative areas of A, B, D, E+F, G, and H were **1**:4:2:4:2:1)].

 $F^{A}SF_{4}^{BM}C(0)CF_{2}^{D}CF_{2}^{E}CF_{2}^{F}CF_{2}^{G}C(0)OH^{H}:$ (nc) mp 136-138^oC; IR (mull): 3545 (m), 3270 (s), 3150 **(mb), 1748 (s), 1705 (s), 1490 (s), 1432 (w), 1330 (w), '287 (w), 1244 (w), 1185 (s), 1155 (s), 1124 (s),** 935 (s), 915 (s), 876 (s), 865 (s), 810 (w), 785 (w), 725 (w), 600 (s) cm^{-1} ; mass spectrum (70 eV) m/e (rel intensity): 416 $[M+H]$ ⁺ (0.1) , 398 $[M-OH]⁺$ (0.3) , 370 $[M-COOH]⁺$ (0.9) , 351 (0.9) , 256 (0.4) , 251 (0.7), 245 $[M-C(0)NHSF_{E}]^{+}$ (2.6), 226 (20.3), 200 (0.4), 178 (4.9), **170 (22.8), 169 (5.8), 150 (8.7), 131 (29.2), 128 (26.9), 127 (100.0 124 (3.6), 104 (9.6), 100 (15.7), 89 (4.1), 69 (11.0); chemical ioni zation mass spectrum (isobutane) m/e (rel intensity): 416 [M+H]+ (lOO.O), 398 (7.2), 396 (2.2), 370 (4.4), 351 (3.1), 226 (10.9), 170 (12.1), 150 (27.9), 131 (40.5), 128 (20.2), 127 (71.1), 124 (8.9), 112 (6.3), 109 (4.8), 107 (10.7), 105 (76.8), 104 (25.7); 'H and "F NMR** (Me₂SO-d₆): δ_{A} 104.2 (m), δ_{B} 78.9 (m), δ_{C} 7.87 (bs), δ_{D} -114.3 (bt), δ_F^- -121.1 (m), δ_F^- -122.2 (m), δ_G^- -118.1 (bt), δ_H unresolved I_{AR} = 159 Hz, J_{DF} = 12.5 Hz, J_{FG} = 12.5 Hz (relative areas of A, **8, D, E, F, and G were 1:4:2:2:2:2)].**

Anal: Calcd. for C₆H₂NSO₃F₁₃: C, 17.35; H, 0.48; N, 3.37; S, **7.7'. Found: C, 17.02; H, 0.79; N, 3.31; S, 8.08.**

RESULTS AND DISCUSSION

The isocyanate SF₅NCO has been shown to react readily with water upon warming from -78° C to give SF₅NH₂ and CO₂ [3]. These products **presumably result from the thermal decomposition of the carbamic acid** SF_ENHC(0)OH. On the other hand, the carbamyl fluoride SF_ENHC(0)F **reacts with both water and hydrogen sulfide to produce the bis-urea** (SF₅NH)₂CO. The observation of SF₅NCO as an early product in these **reactions indicates that the mechanism is not a true hydrolysis of the carbamyl fluoride, but instead a dehydrofluorination.**

G. D. Buckley et al. has previously proposed this mechanism based **on similiar results for the hydrolysis of phenylcarbamyl fluoride** [41. **The driving force for the dehydrofluorination is the ease of hydration of hydrogen fluoride. In fact Buckley found that the hydrolysis**

$$
SF_{5}NHC(0)F + H_{2}X (where X=0, S) \longrightarrow SF_{5}NCO + HF^{+}H_{2}X
$$

\n
$$
SF_{5}NHC(0)XHJ
$$

\n
$$
SF_{5}NHC(0)XHJ
$$

\n
$$
SF_{5}NHC(0)XHJ
$$

\n
$$
SF_{5}NH_{2} \downarrow Cov
$$

\n
$$
OF_{5}NH_{2} \downarrow cov
$$

\n(1)

of phenylcarbamyl fluoride with aqueous 40% hydrofluoric acid was completely suppressed [4].

In this case, there is good evidence supporting the dehydrofluorination mechanism. The best evidence lies in the observation that a high percentage of SF₅NCO is formed when H₂S reacts with SF₅NHC(O)F. The SF₅NCO then reacts slowly with H₂S.HF giving SF₅NH₂ which produces (SF₅NH)₂CO in the SF₅NCO rich environment. Additional evidence **supporting the dehydrofluorination mechanism is found in the hydrolysis** of SF₅NHC(O)F with aqueous 50% HF. Unlike the case with pure water **where the reaction is complete within one hour, with aqueous 50% HF** appreciable quantities of SF₅NCO are still present after one hour. **Since hydrofluoric acid is present in both cases, it must influence the reaction at the rate determining step. This must be the formation of the carbamic acid. With this reaction step being rate determining,** the formation of urea occurs since SF₅NH₂ is formed in the presence of excess isocyanate. The reaction between water and pure SF₅NCO is fast and apparently no appreciable concentration of SF_ENCO is available **to react with the amine being formed from the decomposing acid.**

The reagents, phenyl lithium and phosphorus pentachloride, also act only to remove HF from the carbamyl fluoride. Phenyl lithium reacts as a strong base with SF_ENHC(0)F forming LiF and benzene. **In the reaction with PC15, hydrogen chloride is formed either from** the post dehydrofluorination exchange reaction between PC1₅ and HF or through a halogen exchange on SF₅NHC(0)F and subsequent dehydro**halogenation. Carbonyl fluoride formed via isocyanate disproportionation in the presence of HF (eq. 2) has previously been observed in our laboratory [Z].**

$$
SF5NCO + 2HF \implies SF5NH2 + C(O)F2
$$
 (2)

The ring of the cyclic imide $SF_RNC(0)CF_2CF_2C(0)$ can be opened **by reaction with various nucleophilic reagents. The results of the hydrolysis reaction can be explained by equation 3. This mechanism**

is entirely consistent with the second order kinetics previously reported for the hydrolysis of imides [5]. Also, stable derivatives of cyclic imides that are similiar to the proposed semi-hydrate intermediate have been isolated [6]. The amide SF₅NHC(0)CF₂CF₂C(0)NH₂ was isolated in 9.4% yield from the reaction of SF₅ $\overline{NC(0)}$ CF₂CF₂C(0) **with anhydrous ammonia, while only mass spectral evidence was obtained** for SF₅NHC(0)CF₂CF₂C(0)OCH₃ in the reaction of the imide with methanol.

In an attempt to prepare the analogous six- and seven-membered cyclic imides, SF₅NH₂ was reacted with both perfluoroglutaryl chloride **and perfluoroadipoyl fluoride. Neither reaction gave a cyclic imide product even when attempted under dilute solution conditions. However, both mono- and diacyl derivatives were isolated in each reaction (es 4). The amide-acid fluoride products were found to be rapidly hydrolyzed by atmospheric moisture (eq 5).**

 σ SF₅NHC(O)(CF₂)_{3,4}C(O)NHSF₅
SF_ENH₂ + XC(O)(CF₂)_{3,4}C(O)X (where X=Cl or F) ^A SF_ENHC(0)(CF₂)₃ $\text{SF}_{\mathsf{F}}\text{NHC}(0)(\text{CF}_{2})$ _{3, 4}C(0)F $\xrightarrow{\text{CF}_{\mathsf{F}}}\text{SFT}_{\mathsf{F}}\text{NHC}(0)(\text{CF}_{2})$ _{3, 4}C(0)0 **(4) (5)**

The infrared, mass spectral, and nuclear magnetic resonance data are consistent with the proposed structures for the compounds reported. Each new compound gave a weak intensity [M+H]⁺⁺ ion in the electron **impact mass spectrum instead of a molecular ion. This is believed to be due to bimolecular collisions occurring in the ion chamber where a hydrogen atom is transferred from a neutral molecule to the molecular** **ion. This phenomenum is generally observed only in molecules containing heteroatoms such as oxygen, sulfur, and nitrogen [71. In all cases where the chemical ionization mass spectrum was also obtained, a stark [M+Hl+ ion was observed.**

The ¹⁹F NMR spectrum of each compound exhibited an AB₄ splitting pattern characteristic of the SF₅ group. The greater shielding of the **axial fluorine in each of the two amide-acid fluorides, in comparison to the other derivatives, is most likely due to a solvent effect [1,81. Beta couplings between organofluorines were also characteristically** larger than alpha couplings [9].

ACKNOWLEDGMENT

J.S.T. **and J.L.H. gratefully acknowledge Virginia Polytechnic Institute and State University for partial financial support.**

REFERENCES

- 1 J.S. Thrasher, J.L. Howell and A.F. Clifford, Inorg. Chem., 21 **(1982) 1616 - Part I.**
- **2 L.C. Duncan, T.C. Rhyne, A.F. Clifford, R.E. Shaddix and J.W. Thompson, J. Inorg. Nucl: Chem., Suppl. (1976) 33.**
- **3 a)** J.L. **Howell, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, 1978.**
	- **b) J.S. Thrasher,** J.L. **Howell and A.F. Clifford, in preparation.**
- 4 G.D. Buckley, H.A. Piggott and A.J.E. Welch, J. Chem. Soc. (1945) 864.
- 5 M.K. Hargreaves, J.G. Pritchard and H.R. Dave, Chem. Rev. 70 (1970) **439.**
- **6 A. Queen and A. Reipas, J. Chem. Soc.,C, (1967) 246.**
- **7 R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Identification of Organic Compounds, 3rd ed., John Wiley & Sons, Inc., New York, 1973, p. 15.**
- **8 A.F. Clifford, J.S. Thrasher, C.R. Newman, D.E. Maurer and J.L. Howell, paper presented at the 178th National Meeting of the American Chemical Society, Honolulu, HI, Aug. 1979.**
- **9 E.F. Mooney, An Introduction to I9 F NMR Spectroscopy, Heyden & Sons, Ltd., New York, 1970, Chapter 2.**